

Xiaoxu Zhou (MS Student) Brian G. Thomas

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Acknowledgements

- Continuous Casting Consortium Members (Baosteel, Corus, Goodrich, Labein, LWB Refractories, Mittal, Nucor, Postech, Steel Dynamics, Ansys Inc.)
- National Science Foundation
 GOALI DMI 05-00453 (Online)
- Other graduate students, especially Huan Li and Bryan Petrus James.

Outline

- Nucor trials-pyrometer measurements
- Con1d prediction of Nucor trials
- Con1d prediction of whale formation
- Con1d tests of hysteresis
- Conclusions

Pyrometer Specifications

Modline® 5, 5R-141000, 4M5#25579
1346 mm
15.5 mm
11385 mm
8380 mm
6015.3 mm
3866.1 mm
13970 mm

Spray zones configuration in con1d input file

ous ting nsortium	i	input file			
Zone No.	Zone Starts	# of Rolls	Roll Radius (m)		
(1)	850	1 (1)	0.062		
(2)	940	5 (2~6)	0.062		
(3)	1767	6 (7~12)	0.062		
(4)	2823.3	5 (13~17)	0.070		
(5)	3773.6	1 (18)	0.080		
(6)	3968.6	9 (19~27)	0.080		
(7)	5903.6	1 (28)	0.095		
(8)	6130.3	9 (29~37)	0.095		
(9)	8260.0	1 (38)	0.095		
(10)	8495.8	10 (39~48)	0.095		
(11)	10995.8	1 (49)	0.115		

.

.

Case 4 13 Jan Transient (Low and High Spray)

Nucor experiment (from Amar's ccc meeting 2006)

Parameter	Value
Time of Experiment	Jan. 13, 2006, 1610-1640 hrs.
Casting Speed	142.1 ipm (3.61 m/min) (0.06 m/s)
Spray Pattern Number	4 to 7
Composition of Elements (%)	C .247 Mn 1.09 S 0.0019 Al 0.039 Ca .0018 Si .175 P .014 Cu .087 N (leco).0076
Caster	South
Pouring Temperature	1547.777 °C

•The casting speed kept constant.

•The spray pattern went like high-low-high-low-high.

Characterize using CON1D

--from Vapalahti's 2006 ccc meeting report:

"Delavan Nozzle Characterization at CINVESTAV"

Characterize using CON1D

Specific input variables:

Model parameters	Casting speed	Spray length	Solid fraction	h profile	Water flow rates
values	3.61 m/min	$\begin{array}{c} 0.078\\ 0.148\\ 0.16\\ 0.17\\ 0.176\\ 0.204\\ 0.204\\ 0.212\\ 0.212\\ 0.212\\ 0.212\\ \end{array}$	0.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Low High 79.763 87.757 187.967 162.603 129.934 101.644 50.642 29.012 50.642 36.426 50.642 36.426 50.642 36.426 50.642 36.426 50.642 36.426 55.980 18.613 25.980 18.613 47.375 47.375 47.375 47.375

University of Illinois at Urbana-Champaign

600 0

•

Metals Processing Simulation Lab

.

15 Xiaoxu Zhou

8000 Distance below meniscus (mm)

10000

6000

16000

pyrometer #5

14000

12000

4000

2000

Con1d predictions-- case 4_high spray

Observations

- Compared to pyrometer measurements Con1d gives higher temperature prediction in the spray region except the pyrometer 2 in the case 4_low spray. In order to match pyrometer 2 measurement, the heat transfer coefficient should be increased appropriately around 6000 mm down the strand.
- Pyrometer focuses the thermal radiation onto the detector. However, there is much mist around strand which should decrease the power intensity collected by pyrometers. Then, it is the fact that pyrometer gives lower reading.
- Thus, Con1d temperature prediction matches reasonably pyrometer measurements in the spray region in these two cases.

asting

whale formation cases Casting conditions (Nucor Dec 9, 2003)

	Case 1	Case 2	Case 3
Casting Speed (ipm)	146	157	146
Spray Pattern	1	1	6
Observation at Plant	No Whale	No Whale	Whale

Containment limit = 11246.0mm

Specific input variables in con1d:

	Model parameters	Spray length	Solid fraction	h profile	
	values	0.05 mm for all sprays	0.7	Flat-top for all sparys (z1 z2 z3 h1 h2 h3) (0 0.5 1.0 1.0 1.0 1.0)	
University of	Illinois at Urbana-Champaign	Metals Process	ing Simulation	Lab • Xiaoxu Zh	ou 21

Con1d prediction of Case 1

22

Input variables:

Model paramet ers	Casting speed	Spray length	Solid fraction	h profile	Water flow rates
values	3.9878 m/min (157ipm)	0.078 0.148 0.16 0.17 0.176 0.176 0.204 0.204 0.204 0.212 0.212 0.212	0.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98.600 216.600 146.100 57.100 57.300 51.100 51.100 30.300 30.300 30.300

University of Illinois at Urbana-Champaign

uous ng sortium

Metals Processing Simulation Lab

Xiaoxu Zhou

25

Whale formation Con1d9.6 prediction Case3

Whale observed in the plant for Case 3.

But prediction gives solid far away before containment limit.

Conclusions: Heat transfer coefficients were too high

Pyrometer temperatures (which are matched by this run) were reading too low

Leidenfrost effect with hysteresis

•Con1d 9.6 was modified to consider hysteresis in Liedenfrost effect:

•If surface temperature ts_{next} > ts, meaning heating, LF effect is employed.

•If surface temperature ts_{next}<ts, meaning cooling, LF effect is not employed.

• Using the following set of h multipliers

h-multipliers	1.0	1.2	2.2	1.6	1.0
temperatures	700.	800	900.	1000	1050.

University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · Xiaoxu Zhou 27

Conclusion and future work

- Several CON1D simulations have been combined to show that pyrometer measurements maybe not believable.
- Hysteresis based on heating / cooling is oversimplified, as fluctuations between rolls made the Leidenfrost effect with hysteresis negligible in test simulations.
- · Parameters are needed to simultaneously match:
 - lab heat extraction measurements at Cinvestav
 - Pyrometer temperatures or TC traces measured at plant
 - Whale formation / shell thickness

nuous •asting